ARCH 2615-5615

Steel beams

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

But, from horizontal equilibrium:

$C=T=1 / 2(\sigma)(d / 2)(b)$

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

But, from horizontal equilibrium:
$C=T=1 / 2(\sigma)(d / 2)(b)$

Substituting C into the first equation:

$M=1 / 2(\sigma)(d / 2)(b)(2 / 3)(d)=(\sigma)\left(b d^{2} / 6\right)=(\sigma)\left(S_{x}\right)$
S_{x} is called the "section modulus"

But in steel design, we take advantage of the additional strength beyond the elastic moment corresponding to the section modulus.

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

But, from horizontal equilibrium:
$C=T=1 / 2(\sigma)(d / 2)(b)$
Substituting C into the first equation: $M=1 / 2(\sigma)(d / 2)(b)(2 / 3)(d)=(\sigma)\left(b d^{2} / 6\right)=(\sigma)\left(S_{x}\right)$

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

But, from horizontal equilibrium:
$C=T=1 / 2(\sigma)(d / 2)(b)$
Substituting C into the first equation:
$M=1 / 2(\sigma)(d / 2)(b)(2 / 3)(d)=(\sigma)\left(b d^{2} / 6\right)=(\sigma)\left(S_{x}\right)$
S_{x} is called the "section modulus"

But in steel design, we take advantage of the additional strength beyond the elastic moment corresponding to the section modulus.

(a)
(b)
(c)
(d)
(e)
(f)
stress

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

But, from horizontal equilibrium:
$C=T=1 / 2(\sigma)(d / 2)(b)$
Substituting C into the first equation:
$M=1 / 2(\sigma)(d / 2)(b)(2 / 3)(d)=(\sigma)\left(b d^{2} / 6\right)=(\sigma)\left(S_{x}\right)$
S_{x} is called the "section modulus"

But in steel design, we take advantage of the additional strength beyond the elastic moment corresponding to the section modulus.

(a)
(b)
(c)
(d)
(e)
(f)
stress

The equilibrium equations change: $M=C(1 / 2)(d)$.

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

But, from horizontal equilibrium:
$C=T=1 / 2(\sigma)(d / 2)(b)$
Substituting C into the first equation:
$M=1 / 2(\sigma)(d / 2)(b)(2 / 3)(d)=(\sigma)\left(b d^{2} / 6\right)=(\sigma)\left(S_{x}\right)$
S_{x} is called the "section modulus"

But in steel design, we take advantage of the additional strength beyond the elastic moment corresponding to the section modulus.

$C=T=1 / 2\left(F_{y}\right)(d / 2)(b)$

The force couple consisting of the compressive and tensile resultants is what we call the "bending moment" at the section where the free-body diagram is cut: $M=C(2 / 3)(d)$.

But, from horizontal equilibrium:
$C=T=1 / 2(\sigma)(d / 2)(b)$
Substituting C into the first equation:
$M=1 / 2(\sigma)(d / 2)(b)(2 / 3)(d)=(\sigma)\left(b d^{2} / 6\right)=(\sigma)\left(S_{x}\right)$
S_{x} is called the "section modulus"

But in steel design, we take advantage of the additional strength beyond the elastic moment corresponding to the section modulus.

(a)
(b)
(c)
(d)
(e)
(f)
stress

(g)

The equilibrium equations change: $M=C(1 / 2)(d)$.

From horizontal equilibrium: $C=T=1 / 2\left(F_{y}\right)(d / 2)(b)$

Substituting C into the first equation:
$M=\left(F_{y}\right)(d / 2)(b)(1 / 2)(d)=\left(F_{y}\right)\left(b d^{2} / 4\right)=\left(F_{y}\right)\left(Z_{x}\right)$
Z_{x} is called the "plastic section modulus" and $Z_{x}=M / F_{y}$

Compact sections and the beam design equation

The equation for plastic section modulus, $Z_{x}=M / F_{y}$, presumes that the cross section is able to reach a state of complete yielding before one of two types of buckling occurs: either (a) lateral-torsional buckling within any unbraced segment along the length of the span or (b) local flange or web buckling.

Compact sections and the beam design equation

The equation for plastic section modulus, $Z_{x}=M / F_{y}$, presumes that the cross section is able to reach a state of complete yielding before one of two types of buckling occurs: either lateral-torsional buckling within any unbraced segment along the length of the span or local flange or web buckling.

Therefore, to use this equation in design, based on the maximum moment encountered, the beam must be protected from both of these buckling modes, in the first case by limiting the effective length (typically happens "automatically" since the compressive flange is "braced" by the floor deck) and, in the second case, by regulating the proportions of the beam flange and web (i.e., using a so-called compact section).

Compact sections and the beam design equation

The equation for plastic section modulus, $Z_{x}=M / F_{y}$, presumes that the cross section is able to reach a state of complete yielding before one of two types of buckling occurs: either lateral-torsional buckling within any unbraced segment along the length of the span or local flange or web buckling.

Therefore, to use this equation in design, based on the maximum moment encountered, the beam must be protected from both of these buckling modes, in the first case by limiting the effective length (typically happens "automatically" since the compressive flange is "braced" by the floor deck) and, in the second case, by regulating the proportions of the beam flange and web (i.e., using a so-called compact section).

Then, rewriting this equation in the form most useful for steel design, by adding a safety factor that limits the maximum stress in the beam to $0.6 F_{y}$, we get:
$Z_{\text {req }}=M_{\max } /\left(0.6 F_{y}\right)$
where $M_{\max }=$ the maximum bending moment (in-kips), F_{y} is the yield stress of the steel (ksi), and 0.6 is a safety factor for bending. The units of the required plastic section modulus are in^{3}.

Framing plan
Design typical beam (no live load reduction).

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(k s i)$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & 235 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \\ & \hline \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, F_{u} (ksi)	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & \hline 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \\ \hline \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathrm{ksi})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 Gr. B } \\ & \text { A500 Gr. B } \\ & \text { A53 Gr. B } \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l\|} 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

$Z_{\text {req }}=M_{\text {max }} /\left(0.6 F_{y}\right)$
$Z_{\text {req }}=1223.04 /(0.6 \times 50)=40.77 \mathrm{in}^{3}$

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathrm{ksi})$	(Ultimate) tensile stress, F_{u} (ksi)	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l} 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

$Z_{\text {req }}=M_{\text {max }} /\left(0.6 F_{y}\right)$
$Z_{\text {req }}=1223.04 /(0.6 \times 50)=40.77 \mathrm{in}^{3}$

Select provisional section from Table A-4.15

Table A-4.15: Plastic section modulus $\left(Z_{x}\right)$ values: lightest laterally braced steel compact shapes for bending,
$F_{y}=50 \mathrm{ksi}$

Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(i n^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$
W6 $\times 8.5{ }^{1}$	5.59	3.14	W21 $\times 55$	126	6.11	W40 $\times 211$	906	8.87
W6 $\times 9^{1}$	6.23	3.20	W24 $\times 55$	134	4.73	$\mathrm{W} 40 \times 215$	964	12.5
W8 $\times 10^{1}$	8.77	3.14	W21 $\times 62$	144	6.25	W44 $\times 230$	1100	12.1
$\mathrm{W} 10 \times 12^{1}$	12.5	2.87	W24 $\times 62$	153	4.87	W40 $\times 249$	1120	12.5
W12 $\times 14$	17.4	2.66	W21 $\times 68$	160	6.36	$\mathrm{W} 44 \times 262$	1270	12.3
W12 $\times 16$	20.1	2.73	W24 $\times 68$	177	6.61	W44 $\times 290$	1410	12.3
W10 $\times 19$	21.6	3.09	W24 $\times 76$	200	6.78	W40 $\times 324$	1460	12.6
W12 $\times 19$	24.7	2.90	W24 $\times 84$	224	6.89	$\mathrm{W} 44 \times 335$	1620	12.3
W10 $\times 22$	26.0	4.70	$\mathrm{W} 27 \times 84$	244	7.31	$\mathrm{W} 40 \times 362$	1640	12.7
W12 $\times 22$	29.3	3.00	W30 $\times 90$	283	7.38	$\mathrm{W} 40 \times 372$	1680	12.7
W14 $\times 22$	33.2	3.67	W30 $\times 99$	312	7.42	$\mathrm{W} 40 \times 392$	1710	9.33
W12 $\times 26$	37.2	5.33	$W 30 \times 108$	346	7.59	W40 $\times 397$	1800	12.9
W14 $\times 26$	40.2	3.81	W30 $\times 116$	378	7.74	$\mathrm{W} 40 \times 431$	1960	12.9
W16 $\times 26$	44.2	3.96	W33 $\times 118$	415	8.19	W36 $\times 487$	2130	14.0
$\mathrm{W} 14 \times 30$	47.3	5.26	W33 $\times 130$	467	8.44	$\mathrm{W} 40 \times 503$	2320	13.1
W16 $\times 31$	54.0	4.13	W36 $\times 135$	509	8.41	W36 $\times 529$	2330	14.1
$\mathrm{W} 14 \times 34$	54.6	5.40	W33 $\times 141$	514	8.58	$\mathrm{W} 40 \times 593$	2760	13.4
$\mathrm{W} 18 \times 35$	66.5	4.31	$W 40 \times 149$	598	8.09	W36 $\times 652$	2910	14.5
W16 $\times 40$	73.0	5.55	W36 $\times 160$	624	8.83	W36 $\times 655$	3080	13.6
W18 $\times 40$	78.4	4.49	$\mathrm{W} 40 \times 167$	693	8.48	W36 $\times 723$	3270	14.7
W21 $\times 44$	95.4	4.45	W36 $\times 182$	718	9.01	W36 $\times 802$	3660	14.9
W21 $\times 48$	107	6.09	$\mathrm{W} 40 \times 183$	774	8.80	W36 $\times 853$	3920	15.1
$\mathrm{W} 21 \times 50$	110	4.59	W40 $\times 199$	869	12.2	W36 $\times 925$	4130	15.0
$\mathrm{W} 18 \times 55$	112	5.90						

Table A-4.15: Plastic section modulus $\left(Z_{x}\right)$ values: lightest laterally braced steel compact shapes for bending,
$F_{y}=50 \mathrm{ksi}$

Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$
W6 $\times 8.5^{1}$	5.59	3.14	W21 $\times 55$	126	6.11	W40 $\times 211$	906	8.87
W6 $\times 9^{1}$	6.23	3.20	W24 $\times 55$	134	4.73	W40 $\times 215$	964	12.5
W8 $\times 10^{1}$	8.77	3.14	W21 $\times 62$	144	6.25	W44 $\times 230$	1100	12.1
$\mathrm{W} 10 \times 12^{1}$	12.5	2.87	W24 $\times 62$	153	4.87	W40 $\times 249$	1120	12.5
W12 $\times 14$	17.4	2.66	W21 $\times 68$	160	6.36	W44 $\times 262$	1270	12.3
W12 $\times 16$	20.1	2.73	W24 $\times 68$	177	6.61	W44 $\times 290$	1410	12.3
W10 $\times 19$	21.6	3.09	W24 $\times 76$	200	6.78	W40 $\times 324$	1460	12.6
W12 $\times 19$	24.7	2.90	W24 $\times 84$	224	6.89	W44 $\times 335$	1620	12.3
W10 $\times 22$	26.0	4.70	W27 $\times 84$	244	7.31	W40 $\times 362$	1640	12.7
W12 $\times 22$	29.3	3.00	W30 $\times 90$	283	7.38	$\mathrm{W} 40 \times 372$	1680	12.7
W14 $\times 22$	33.2	3.67	W30 $\times 99$	312	7.42	W40 $\times 392$	1710	9.33
W12 $\times 26$	37.2	5.33	W30 $\times 108$	346	7.59	W40 $\times 397$	1800	12.9
W14 $\times 26$	40.2	3.81	W30 $\times 116$	378	7.74	W40 $\times 431$	1960	12.9
W16 $\times 26$	44.2	3.96	W33 $\times 118$	415	8.19	W36 $\times 487$	2130	14.0
W14 $\times 30$	47.3	5.26	W33 $\times 130$	467	8.44	W40 $\times 503$	2320	13.1
W16 $\times 31$	54.0	4.13	W36 $\times 135$	509	8.41	W36 $\times 529$	2330	14.1
W14 $\times 34$	54.6	5.40	W33 $\times 141$	514	8.58	W40 $\times 593$	2760	13.4
W18 $\times 35$	66.5	4.31	W40 $\times 149$	598	8.09	W36 $\times 652$	2910	14.5
W16 $\times 40$	73.0	5.55	W36 $\times 160$	624	8.83	W36 $\times 655$	3080	13.6
W18 $\times 40$	78.4	4.49	W40 $\times 167$	693	8.48	W36 $\times 723$	3270	14.7
W21 $\times 44$	95.4	4.45	W36 $\times 182$	718	9.01	W36 $\times 802$	3660	14.9
W21 $\times 48$	107	6.09	W40 $\times 183$	774	8.80	W36 $\times 853$	3920	15.1
W21 × 50	110	4.59	W40 $\times 199$	869	12.2	W36 $\times 925$	4130	15.0
W18 × 55	112	5.90						

Table A-4.15: Plastic section modulus $\left(Z_{x}\right)$ values: lightest laterally braced steel compact shapes for bending,
$F_{y}=50 \mathrm{ksi}$

Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(i n^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$
W6 $\times 8.5{ }^{1}$	5.59	3.14	W21 $\times 55$	126	6.11	W40 $\times 211$	906	8.87
W6 $\times 9^{1}$	6.23	3.20	W24 $\times 55$	134	4.73	$\mathrm{W} 40 \times 215$	964	12.5
W8 $\times 10^{1}$	8.77	3.14	W21 $\times 62$	144	6.25	W44 $\times 230$	1100	12.1
$\mathrm{W} 10 \times 12^{1}$	12.5	2.87	W24 $\times 62$	153	4.87	W40 $\times 249$	1120	12.5
W12 $\times 14$	17.4	2.66	W21 $\times 68$	160	6.36	$\mathrm{W} 44 \times 262$	1270	12.3
W12 $\times 16$	20.1	2.73	W24 $\times 68$	177	6.61	W44 $\times 290$	1410	12.3
W10 $\times 19$	21.6	3.09	W24 $\times 76$	200	6.78	W40 $\times 324$	1460	12.6
W12 $\times 19$	24.7	2.90	W24 $\times 84$	224	6.89	$\mathrm{W} 44 \times 335$	1620	12.3
W10 $\times 22$	26.0	4.70	$\mathrm{W} 27 \times 84$	244	7.31	$\mathrm{W} 40 \times 362$	1640	12.7
W12 $\times 22$	29.3	3.00	W30 $\times 90$	283	7.38	$\mathrm{W} 40 \times 372$	1680	12.7
W14 $\times 22$	33.2	3.67	W30 $\times 99$	312	7.42	$\mathrm{W} 40 \times 392$	1710	9.33
W12 $\times 26$	37.2	5.33	$W 30 \times 108$	346	7.59	W40 $\times 397$	1800	12.9
W14 $\times 26$	40.2	3.81	W30 $\times 116$	378	7.74	$\mathrm{W} 40 \times 431$	1960	12.9
W16 $\times 26$	44.2	3.96	W33 $\times 118$	415	8.19	W36 $\times 487$	2130	14.0
$\mathrm{W} 14 \times 30$	47.3	5.26	W33 $\times 130$	467	8.44	$\mathrm{W} 40 \times 503$	2320	13.1
W16 $\times 31$	54.0	4.13	W36 $\times 135$	509	8.41	W36 $\times 529$	2330	14.1
$\mathrm{W} 14 \times 34$	54.6	5.40	W33 $\times 141$	514	8.58	$\mathrm{W} 40 \times 593$	2760	13.4
$\mathrm{W} 18 \times 35$	66.5	4.31	$W 40 \times 149$	598	8.09	W36 $\times 652$	2910	14.5
W16 $\times 40$	73.0	5.55	W36 $\times 160$	624	8.83	W36 $\times 655$	3080	13.6
W18 $\times 40$	78.4	4.49	$\mathrm{W} 40 \times 167$	693	8.48	W36 $\times 723$	3270	14.7
W21 $\times 44$	95.4	4.45	W36 $\times 182$	718	9.01	W36 $\times 802$	3660	14.9
W21 $\times 48$	107	6.09	$\mathrm{W} 40 \times 183$	774	8.80	W36 $\times 853$	3920	15.1
$\mathrm{W} 21 \times 50$	110	4.59	W40 $\times 199$	869	12.2	W36 $\times 925$	4130	15.0
$\mathrm{W} 18 \times 55$	112	5.90						

For steel wide-flange shapes, simplified procedures have been developed, based on the average stress on the cross section, neglecting the overhanging flange areas; that is:

$$
\tau_{\max }=\frac{V}{d t_{w}}=V / A_{w}
$$

where $\tau_{\max }=$ the maximum shear stress within the cross section, $V=$ total shear force at the cross section, $d=$ the cross-sectional depth, and $t_{w}=$ the web thickness.

For steel wide-flange shapes, simplified procedures have been developed, based on the average stress on the cross section, neglecting the overhanging flange areas; that is:

$$
\tau_{\max }=\frac{V}{d t_{w}}=V / A_{w}
$$

(where $\tau_{\text {max }}=$ the maximum shear stress within the cross section, $V=$ the total shear force at the cross section, $d=$ the crosssectional depth, and $t_{w}=$ the web thickness.

The "allowable" shear stress depends on the "slenderness" of the cross section (see Table A-4.3) and is set at $0.4 F_{y}$ or $0.36 F_{y}$ so that the equation for checking shear becomes:

Required web area, $A_{w}=V /\left(0.4 F_{y}\right)$ or $A_{w}=V /\left(0.36 F_{y}\right)$

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

				Cross-sectional area $=A$ Moment of inertia $=I$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\begin{gathered} A \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\begin{gathered} d \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{x}}$	$\begin{gathered} Z_{x_{1}} \\ \left(i n^{3}\right) \end{gathered}$	$\underset{\left(\mathrm{in}^{4}\right)}{I_{x}}$	$\underset{\left(i^{4}\right)}{I_{4}}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 426$	125	18.7	1.88	16.7	3.04	706	869	6600	2360	4.34
W14 $\times 455$	134	19.0	2.02	16.8	3.21	756	936	7190	2560	4.38
W14 $\times 500$	147	19.6	2.19	17.0	3.50	838	1050	8210	2880	4.43
W14 $\times 550$	162	20.2	2.38	17.2	3.82	931	1180	9430	3250	4.49
W14 $\times 605$	178	20.9	2.60	17.4	4.16	1040	1320	10800	3680	4.55
W14 $\times 665$	196	21.6	2.83	17.7	4.52	1150	1480	12400	4170	4.62
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
W14 $\times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17
W16 $\times 36{ }^{4}$	10.6	15.9	0.295	6.99	0.430	56.5	64.0	448	24.5	1.52
$\mathrm{W} 16 \times 40^{4}$	11.8	16.0	0.305	7.00	0.505	64.7	73.0	518	28.9	1.57
$\mathrm{W} 16 \times 45^{4}$	13.3	16.1	0.345	7.04	0.565	72.7	82.3	586	32.8	1.57
W16 $\times 50^{4}$	14.7	16.3	0.380	7.07	0.630	81.0	92.0	659	37.2	1.59
W16 $\times 57$	16.8	16.4	0.430	7.12	0.715	92.2	105	758	43.1	1.60

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the

 W16x26 beam in Table A-4.3.This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

From footnote 3 marked next to the section, we use a safety factor of 3.6.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / \mathrm{A}}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(i n^{2}\right)}{A}$	$\underset{(i n .)}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} S_{x_{1}} \\ \left(i^{3}\right) \end{gathered}$	$\begin{gathered} \left.Z_{x_{3}}\right) \\ \left(i^{3}\right) \end{gathered}$	$\underset{\left(i^{4}\right)}{I_{x}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 426$	125	18.7	1.88	16.7	3.04	706	869	6600	2360	4.34
W14 $\times 455$	134	19.0	2.02	16.8	3.21	756	936	7190	2560	4.38
W14 $\times 500$	147	19.6	2.19	17.0	3.50	838	1050	8210	2880	4.43
W14 $\times 550$	162	20.2	2.38	17.2	3.82	931	1180	9430	3250	4.49
W14 $\times 605$	178	20.9	2.60	17.4	4.16	1040	1320	10800	3680	4.55
W14 $\times 665$	196	21.6	2.83	17.7	4.52	1150	1480	12400	4170	4.62
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
$\mathrm{W} 14 \times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17
W16 $\times 36{ }^{4}$	10.6	15.9	0.295	6.99	0.430	56.5	64.0	448	24.5	1.52
$\mathrm{W} 16 \times 40^{4}$	11.8	16.0	0.305	7.00	0.505	64.7	73.0	518	28.9	1.57
$\mathrm{W} 16 \times 45^{4}$	13.3	16.1	0.345	7.04	0.565	72.7	82.3	586	32.8	1.57
$\mathrm{W} 16 \times 50^{4}$	14.7	16.3	0.380	7.07	0.630	81.0	92.0	659	37.2	1.59
W16 $\times 57$	16.8	16.4	0.430	7.12	0.715	92.2	105	758	43.1	1.60

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the

 W16x26 beam in Table A-4.3.This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

From footnote 3 marked next to the section, we use a safety factor of 3.6.

Since $V=14.56 \mathrm{k}$ and $F_{y}=50 \mathrm{ksi}$, the required web area, $A_{w}=14.56 /(0.36 \times 50)=$ 0.809 in² 2

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

				Cross-sectional area $=A$ Moment of inertia $=$ I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} S_{x} \\ \left(i n^{3}\right) \end{gathered}$	$\begin{gathered} Z_{x_{3}} \\ \left(\mathrm{in}^{3}\right) \end{gathered}$	$\underset{\left(i^{4}\right)}{I_{x_{4}}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} r_{y}^{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 426$	125	18.7	1.88	16.7	3.04	706	869	6600	2360	4.34
W14 $\times 455$	134	19.0	2.02	16.8	3.21	756	936	7190	2560	4.38
W14 $\times 500$	147	19.6	2.19	17.0	3.50	838	1050	8210	2880	4.43
W14 $\times 550$	162	20.2	2.38	17.2	3.82	931	1180	9430	3250	4.49
W14 $\times 605$	178	20.9	2.60	17.4	4.16	1040	1320	10800	3680	4.55
W14 $\times 665$	196	21.6	2.83	17.7	4.52	1150	1480	12400	4170	4.62
$\mathrm{W} 14 \times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
$\mathrm{W} 14 \times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17
W16 $\times 36{ }^{4}$	10.6	15.9	0.295	6.99	0.430	56.5	64.0	448	24.5	1.52
$\mathrm{W} 16 \times 40^{4}$	11.8	16.0	0.305	7.00	0.505	64.7	73.0	518	28.9	1.57
$\mathrm{W} 16 \times 45^{4}$	13.3	16.1	0.345	7.04	0.565	72.7	82.3	586	32.8	1.57
$\mathrm{W} 16 \times 50^{4}$	14.7	16.3	0.380	7.07	0.630	81.0	92.0	659	37.2	1.59
W16 $\times 57$	16.8	16.4	0.430	7.12	0.715	92.2	105	758	43.1	1.60

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$ W16x26 beam in Table A-4.3.

This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

From footnote 3 marked next to the section, we use a safety factor of 3.6.

Since $V=14.56 \mathrm{k}$ and $F_{y}=50 \mathrm{ksi}$, the required web area, $A_{w}=14.56 /(0.36 \times 50)=$ 0.809 in² 2

We compare this required web area to the actual web area by finding d and t_{w} in Table A-4.3.

				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{(i n .)}{d}$	$\begin{gathered} \boldsymbol{t}_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{x}}$	$\underset{\left(i^{3}\right)}{Z_{x}}$	$\underset{\left(\mathrm{in}^{4}\right)}{I_{x}}$	$\underset{\left(\mathrm{in}^{4}\right)}{I_{1}}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 426$	125	18.7	1.88	16.7	3.04	706	869	6600	2360	4.34
W14 $\times 455$	134	19.0	2.02	16.8	3.21	756	936	7190	2560	4.38
W14 $\times 500$	147	19.6	2.19	17.0	3.50	838	1050	8210	2880	4.43
W14 $\times 550$	162	20.2	2.38	17.2	3.82	931	1180	9430	3250	4.49
W14 $\times 605$	178	20.9	2.60	17.4	4.16	1040	1320	10800	3680	4.55
W14 $\times 665$	196	21.6	2.83	17.7	4.52	1150	1480	12400	4170	4.62
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
$\mathrm{W} 14 \times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17
W16 $\times 36{ }^{4}$	10.6	15.9	0.295	6.99	0.430	56.5	64.0	448	24.5	1.52
W16 $\times 40^{4}$	11.8	16.0	0.305	7.00	0.505	64.7	73.0	518	28.9	1.57
W16 $\times 45^{4}$	13.3	16.1	0.345	7.04	0.565	72.7	82.3	586	32.8	1.57
$\mathrm{W} 16 \times 50^{4}$	14.7	16.3	0.380	7.07	0.630	81.0	92.0	659	37.2	1.59
W16 $\times 57$	16.8	16.4	0.430	7.12	0.715	92.2	105	758	43.1	1.60

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the W16x26 beam in Table A-4.3.

This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

From footnote 3 marked next to the section, we use a safety factor of 3.6.

Since $V=14.56 \mathrm{k}$ and $F_{y}=50 \mathrm{ksi}$, the required web area, $A_{w}=14.56 /(0.36 \times 50)=$ 0.809 in² 2

We compare this required web area to the actual web area by finding d and t_{w} in Table A-4.3.
$d=15.7 \mathrm{in}$. and $t_{w}=0.25 \mathrm{in}$. Therefore, the actual web area $=15.7 \times 0.25=3.925 \mathbf{i n}^{2}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = / Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\begin{gathered} d \\ (\text { in. }) \end{gathered}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} S_{x_{1}} \\ \left(\mathrm{in}^{3}\right. \end{gathered}$	$\underset{\left(i^{3}\right)}{Z_{x}}$	$\underset{\left(i^{4}\right)}{I_{x}}$	$I_{y_{4}}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 426$	125	18.7	1.88	16.7	3.04	706	869	6600	2360	4.34
W14 $\times 455$	134	19.0	2.02	16.8	3.21	756	936	7190	2560	4.38
W14 $\times 500$	147	19.6	2.19	17.0	3.50	838	1050	8210	2880	4.43
W14 $\times 550$	162	20.2	2.38	17.2	3.82	931	1180	9430	3250	4.49
W14 $\times 605$	178	20.9	2.60	17.4	4.16	1040	1320	10800	3680	4.55
W14 $\times 665$	196	21.6	2.83	17.7	4.52	1150	1480	12400	4170	4.62
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
$\mathrm{W} 14 \times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17
W16 $\times 36^{4}$	10.6	15.9	0.295	6.99	0.430	56.5	64.0	448	24.5	1.52
$\mathrm{W} 16 \times 40^{4}$	11.8	16.0	0.305	7.00	0.505	64.7	73.0	518	28.9	1.57
$\mathrm{W} 16 \times 45^{4}$	13.3	16.1	0.345	7.04	0.565	72.7	82.3	586	32.8	1.57
$\mathrm{W} 16 \times 50^{4}$	14.7	16.3	0.380	7.07	0.630	81.0	92.0	659	37.2	1.59
W16 $\times 57$	16.8	16.4	0.430	7.12	0.715	92.2	105	758	43.1	1.60

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
3. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
4. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the W16x26 beam in Table A-4.3.

This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

From footnote 3 marked next to the section, we use a safety factor of 3.6.

Since $V=14.56 \mathrm{k}$ and $F_{y}=50 \mathrm{ksi}$, the required web area, $A_{w}=14.56 /(0.36 \times 50)=$ $0.809 \mathrm{in}^{2}$

We compare this required web area to the actual web area by finding d and t_{w} in Table A-4.3.
$d=15.7 \mathrm{in}$. and $t_{w}=0.25 \mathrm{in}$. Therefore, the actual web area $=15.7 \times 0.25=3.925 \mathrm{in}^{2}$.

Since the actual web area is greater or equal to the required web area, the section is OK for shear.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{t} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(i n^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{x}}$	$\underset{\left(i^{3}\right)}{Z_{n}}$	$\underset{\left(i^{4}\right)}{I_{4}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 426$	125	18.7	1.88	16.7	3.04	706	869	6600	2360	4.34
W14 $\times 455$	134	19.0	2.02	16.8	3.21	756	936	7190	2560	4.38
W14 $\times 500$	147	19.6	2.19	17.0	3.50	838	1050	8210	2880	4.43
W14 $\times 550$	162	20.2	2.38	17.2	3.82	931	1180	9430	3250	4.49
W14 $\times 605$	178	20.9	2.60	17.4	4.16	1040	1320	10800	3680	4.55
W14 $\times 665$	196	21.6	2.83	17.7	4.52	1150	1480	12400	4170	4.62
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
W14 $\times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17
W16 $\times 36^{4}$	10.6	15.9	0.295	6.99	0.430	56.5	64.0	448	24.5	1.52
W16 $\times 40^{4}$	11.8	16.0	0.305	7.00	0.505	64.7	73.0	518	28.9	1.57
W16 $\times 45^{4}$	13.3	16.1	0.345	7.04	0.565	72.7	82.3	586	32.8	1.57
W16 $\times 50^{4}$	14.7	16.3	0.380	7.07	0.630	81.0	92.0	659	37.2	1.59
W16 $\times 57$	16.8	16.4	0.430	7.12	0.715	92.2	105	758	43.1	1.60

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

The last step in the beam design process is to check the W16x26 for deflection.

The last step in the beam design process is to check the W16x26 for deflection.
Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

The last step in the beam design process is to check the W16x26 for deflection.

Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):

The last step in the beam design process is to check the W16x26 for deflection.
Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{2 2 . 4 6}$ in this case.

Table A-3.15: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

The last step in the beam design process is to check the W16x26 for deflection.

Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{2 2 . 4 6}$ in this case.

Table A-3.15: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

Deflection coefficient, C, for maximum (actual) deflection, Δ (in.), where $\Delta=\frac{C P(L / 12)^{3}}{E I_{x}}$					
		*	*		E
	22.46	9.33	4.49	216	
\downarrow P	35.94	16.0	8.99	n/a	
$\downarrow^{P} \downarrow{ }^{P}$	61.34	26.2	13.31	n/a	
	85.54	36.12	17.97	n/a	
\downarrow^{P}	n/a	n/a	n/a	576	

The other parameters are easily determined:
$P=w(L / 12)$ where w is either the live load or the total load (\#/ft) and L is the span in inches (so $L / 12$ is the span in feet).

The last step in the beam design process is to check the W16x26 for deflection.

Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{2 2 . 4 6}$ in this case.

Table A-3.15: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

Deflection coefficient, C, for maximum (actual) deflection, Δ (in.), where $\Delta=\frac{C P(L / 12)^{3}}{E I_{x}}$				
	$\Delta \Delta$			$-E_{1}$
	22.46	9.33	4.49	216
\downarrow P	35.94	16.07	8.99	n/a
\downarrow 乐 \downarrow^{P}	61.34	26.27	13.31	n/a
$\downarrow \downarrow^{P} \downarrow^{P} \downarrow{ }^{P}$	85.54	36.12	17.97	n/a
\downarrow^{P}	n/a	n/a	n/a	576

The other parameters are easily determined:
$P=w(L / 12)$ where w is either the live load or the total load (\#/ft) and L is the span in inches (so $L / 12$ is the span in feet).

Now, it turns out that we need to check the maximum deflection under two load scenarios: total load and live load. Why??

The last step in the beam design process is to check the W16x26 for deflection.

Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$$
\Delta=5 w L^{4} /\left(384 E I_{\mathrm{x}}\right)
$$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{2 2 . 4 6}$ in this case.

Table A-3.15: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

Deflection coefficient, C, for maximum (actual) deflection, Δ (in.), where $\Delta=\frac{C P(L / 12)^{3}}{E I_{x}}$					
		*	*		E
	22.46	9.33	4.49	216	
\downarrow P	35.94	16.0	8.99	n/a	
$\downarrow^{P} \downarrow{ }^{P}$	61.34	26.2	13.31	n/a	
	85.54	36.12	17.97	n/a	
\downarrow^{P}	n/a	n/a	n/a	576	

The other parameters are easily determined:
$P=w(L / 12)$ where w is either the live load or the total load (\#/ft) and L is the span in inches (so $L / 12$ is the span in feet).

Now, it turns out that we need to check the maximum deflection under two load scenarios: total load and live load. Why??

Because live load by itself might crack a "plaster" ceiling; while total load deflection might be unsightly, or correspond to vibration or bounciness in the floor.

The last step in the beam design process is to check the W16x26 for deflection.

Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$$
\Delta=5 w L^{4} /\left(384 E I_{x}\right)
$$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{2 2 . 4 6}$ in this case.

Table A-3.15: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

Deflection coefficient, C, for maximum (actual) deflection, Δ (in.), where $\Delta=\frac{C P(L / 12)^{3}}{E I_{x}}$				
	$\Delta \Delta$			E^{\prime}
	22.46	9.33	4.49	216
$\downarrow P$	35.94	16.07	8.99	n/a
$\downarrow^{P} \downarrow{ }^{P}$	61.34	26.27	13.31	n/a
	85.54	36.12	17.97	n/a
\downarrow ¢	n/a	n/a	n/a	576

The other parameters are easily determined:
$P=w(L / 12)$ where w is either the live load or the total load (\#/ft) and L is the span in inches (so $L / 12$ is the span in feet).

Now, it turns out that we need to check the maximum deflection under two load scenarios: total load and live load. Why??

Because live load by itself might crack a "plaster" ceiling; while total load deflection might be unsightly, or correspond to vibration or bounciness in the floor.

Start with total load deflection.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(k s i)$	(Ultimate) tensile stress, F_{u} (ksi)	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 Gr. B } \\ & \text { A500 Gr. B } \\ & \text { A53 Gr. B } \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l\|} 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l\|l} 50 \\ 50 \end{array}$	$\begin{array}{\|l} 65 \\ 65 \end{array}$	$\begin{array}{\|l} \hline{ }^{3} \mathrm{~W} \\ \mathrm{HP} \end{array}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(i n^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} S_{x_{2}} \\ \left(\mathrm{in}^{3}\right) \end{gathered}$	$\underset{\left(\mathbf{i n}^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{n}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
$\mathrm{W} 14 \times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
W14 $\times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(k s i)$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr . B A500 Gr B A53 Gr B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ { }^{2} 35 \end{array}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l\|l} 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{i}}$	$\underset{\left(\mathbf{i n}^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{y} \\ \text { (in.) } \end{gathered}$
	$\begin{aligned} & 215 \\ & 238 \\ & 257 \end{aligned}$	22.4 22.8 23.6	$\begin{aligned} & 3.07 \\ & 3.74 \\ & 3.94 \end{aligned}$	17.9 18.6 18.8	4.91 5.12 5.51	$\begin{aligned} & 1280 \\ & 1390 \\ & 1530 \end{aligned}$	$\begin{aligned} & 1660 \\ & 1830 \\ & 2030 \end{aligned}$	$\begin{aligned} & 14300 \\ & 15900 \\ & 18100 \end{aligned}$	$\begin{aligned} & 4720 \\ & 5550 \\ & 6170 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.83 \\ & 4.90 \end{aligned}$
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(22.46)(29.12)(28)^{3} /(29,000 \times 301)=1.64 \mathrm{in}$.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l\|} 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{array}{\|l} 65 \\ 65 \end{array}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(22.46)(29.12)(28)^{3} /(29,000 \times 301)=1.64 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, F_{y} (ksi)	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & \hline 36 \\ & 42 \\ & 46 \\ & 235 \end{aligned}$	$\begin{array}{\|l} 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l\|l} 50 \\ 50 \end{array}$	$\begin{array}{\|l} 65 \\ 65 \end{array}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(22.46)(29.12)(28)^{3} /(29,000 \times 301)=1.64 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / \mathbf{2 4 0}$ while typical roof beam limits are $L / 120, L / 180$, or $L / 240$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{i}}$	$\underset{\left(\mathbf{i n}^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{y} \\ \text { (in.) } \end{gathered}$
	$\begin{aligned} & 215 \\ & 238 \\ & 257 \end{aligned}$	22.4 22.8 23.6	$\begin{aligned} & 3.07 \\ & 3.74 \\ & 3.94 \end{aligned}$	17.9 18.6 18.8	4.91 5.12 5.51	$\begin{aligned} & 1280 \\ & 1390 \\ & 1530 \end{aligned}$	$\begin{aligned} & 1660 \\ & 1830 \\ & 2030 \end{aligned}$	$\begin{aligned} & 14300 \\ & 15900 \\ & 18100 \end{aligned}$	$\begin{aligned} & 4720 \\ & 5550 \\ & 6170 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.83 \\ & 4.90 \end{aligned}$
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{i}}$	$\underset{\left(\mathbf{i n}^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{y} \\ \text { (in.) } \end{gathered}$
	$\begin{aligned} & 215 \\ & 238 \\ & 257 \end{aligned}$	22.4 22.8 23.6	$\begin{aligned} & 3.07 \\ & 3.74 \\ & 3.94 \end{aligned}$	17.9 18.6 18.8	4.91 5.12 5.51	$\begin{aligned} & 1280 \\ & 1390 \\ & 1530 \end{aligned}$	$\begin{aligned} & 1660 \\ & 1830 \\ & 2030 \end{aligned}$	$\begin{aligned} & 14300 \\ & 15900 \\ & 18100 \end{aligned}$	$\begin{aligned} & 4720 \\ & 5550 \\ & 6170 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.83 \\ & 4.90 \end{aligned}$
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(22.46)(29.12)(28)^{3} /(29,000 \times 301)=1.64 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / \mathbf{2 4 0}$ while typical roof beam limits are $L / 120, L / 180$, or $L / 240$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/240 (with L expressed in inches), we get an allowable value of $28 \times 12 / 240=1.4 \mathrm{in}$.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$				T		
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{x}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(i n^{4}\right)}{I_{x_{1}}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{\boldsymbol{y}} \\ \text { (in.) } \end{gathered}$
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
$\mathrm{W} 14 \times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(22.46)(29.12)(28)^{3} /(29,000 \times 301)=1.64 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / \mathbf{2 4 0}$ while typical roof beam limits are $L / 120, L / 180$, or $L / 240$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/240 (with L expressed in inches), we get an allowable value of $28 \times 12 / 240=1.4 \mathrm{in}$.

Conclusion: Since the actual total-load deflection is greater than the allowable total-load deflection, the W16x26 is NOT OK for total-load deflection!

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

LIVE LOAD DEFLECTION...
is the same except with a different load in the equation. The live load, $w=75 \times 8=600 \# / \mathrm{ft}=0.6 \mathrm{k} / \mathrm{ft}$, so... The live load, $P=0.6 \times 28=16.8 \mathrm{k}$

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{i}}$	$\underset{\left(\mathbf{i n}^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{y} \\ \text { (in.) } \end{gathered}$
	$\begin{aligned} & 215 \\ & 238 \\ & 257 \end{aligned}$	22.4 22.8 23.6	$\begin{aligned} & 3.07 \\ & 3.74 \\ & 3.94 \end{aligned}$	17.9 18.6 18.8	4.91 5.12 5.51	$\begin{aligned} & 1280 \\ & 1390 \\ & 1530 \end{aligned}$	$\begin{aligned} & 1660 \\ & 1830 \\ & 2030 \end{aligned}$	$\begin{aligned} & 14300 \\ & 15900 \\ & 18100 \end{aligned}$	$\begin{aligned} & 4720 \\ & 5550 \\ & 6170 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.83 \\ & 4.90 \end{aligned}$
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

LIVE LOAD DEFLECTION...
is the same except with a different load in the equation. The live load, $w=75 \times 8=600 \# / \mathrm{ft}=0.6 \mathrm{k} / \mathrm{ft}$, so...
The live load, $P=0.6 \times 28=16.8 \mathrm{k}$

The actual live load deflection is:
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(22.46)(16.8)(28)^{3} /(29,000 \times 301)=0.95$ in.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 l_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{l_{y} / A}$,		
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(i^{2}\right)}{I_{4}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{n}^{2}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ (\text { in. } \end{gathered}$
$\begin{aligned} & W 14 \times 730 \\ & W 14 \times 808 \\ & W 14 \times 873 \end{aligned}$	$\begin{aligned} & 215 \\ & 238 \\ & 257 \end{aligned}$	22.4 22.8 23.6	$\begin{aligned} & 3.07 \\ & 3.74 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 17.9 \\ & 18.6 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 4.91 \\ & 5.12 \\ & 5.51 \end{aligned}$	$\begin{aligned} & 1280 \\ & 1390 \\ & 1530 \end{aligned}$	$\begin{aligned} & 1660 \\ & 1830 \\ & 2030 \end{aligned}$	$\begin{aligned} & 14300 \\ & 15900 \\ & 18100 \end{aligned}$	$\begin{aligned} & 4720 \\ & 5550 \\ & 6170 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.83 \\ & 4.90 \end{aligned}$
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $\boldsymbol{F}_{\boldsymbol{y}}(\mathbf{k s i})$	(Ultimate) tensile stress, $\boldsymbol{F}_{\boldsymbol{u}}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36	36	58	$\mathrm{M}, \mathrm{S}, \mathrm{C}, \mathrm{MC}, \mathrm{L}$, plates 4 and bars
	A500 Gr. B	42	58	HSS round
	A500 Gr. B	46	58	HSS rectangular
	A53 Gr. B	${ }^{5} 35$	68	Pipe
High-strength, low- alloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

LIVE LOAD DEFLECTION...
is the same except with a different load in the equation. The live load, $w=75 \times 8=600 \# / \mathrm{ft}=0.6 \mathrm{k} / \mathrm{ft}$, so...
The live load, $P=0.6 \times 28=16.8 \mathrm{k}$

The actual live load deflection is:
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(22.46)(16.8)(28)^{3} /(29,000 \times 301)=0.95 \mathrm{in}$.

The allowable live load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(k s i)$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{array}{\|l} \hline 65 \\ 65 \end{array}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = $/$ Section modulus, $S_{x}=21_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\begin{gathered} A \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(\mathrm{in}^{3}\right)}{Z_{1}}$	$\underset{\left(\mathrm{in}^{4}\right)}{I_{x_{1}}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
W14 $\times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
$\mathrm{W} 16 \times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

LIVE LOAD DEFLECTION...

is the same except with a different load in the equation. The live load, $w=75 \times 8=600 \# / \mathrm{ft}=0.6 \mathrm{k} / \mathrm{ft}$, so...
The live load, $P=0.6 \times 28=16.8 \mathrm{k}$

The actual live load deflection is:
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(22.46)(16.8)(28)^{3} /(29,000 \times 301)=0.95 \mathrm{in}$.

The allowable live load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For live loads only, the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/360 (with L expressed in inches), we get an allowable value of $28 \times 12 / 360=0.93 \mathrm{in}$.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ { }^{2} 35 \end{array}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \\ \hline \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{i} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = / Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\underset{\text { (in.) }}{\boldsymbol{b}_{f}}$	$\begin{gathered} t_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{x}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y^{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
$\mathrm{W} 14 \times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
$\mathrm{W} 16 \times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

LIVE LOAD DEFLECTION...

is the same except with a different load in the equation. The live load, $w=75 \times 8=600 \# / \mathrm{ft}=0.6 \mathrm{k} / \mathrm{ft}$, so...
The live load, $P=0.6 \times 28=16.8 \mathrm{k}$

The actual live load deflection is:
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(22.46)(16.8)(28)^{3} /(29,000 \times 301)=0.95 \mathrm{in}$.

The allowable live load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For live loads only, the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/360 (with L expressed in inches), we get an allowable value of $28 \times 12 / 360=0.93 \mathrm{in}$.

Conclusion: Since the actual total-load deflection is greater than the allowable total-load deflection, the W16x26 is NOT OK for live-load deflection!

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{x}}$	$\underset{\left(\mathbf{i n}^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
W14 $\times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

LIVE LOAD DEFLECTION...

is the same except with a different load in the equation. The live load, $w=75 \times 8=600 \# / \mathrm{ft}=0.6 \mathrm{k} / \mathrm{ft}$, so... The live load, $P=0.6 \times 28=16.8 \mathrm{k}$

The actual live load deflection is:
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(22.46)(16.8)(28)^{3} /(29,000 \times 301)=0.95$ in.

The allowable live load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For live loads only, the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/360 (with L expressed in inches), we get an allowable value of $28 \times 12 / 360=0.93 \mathrm{in}$.

Conclusion: Since the actual total-load deflection is greater than the allowable total-load deflection, the W16x26 is not OK for live-load deflection!

To improve the deflection performance of the beam, find a cross section with a larger moment of inertia (and an acceptable plastic section modulus for bending stress).

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathrm{ksi})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 } \mathrm{Gr} . \mathrm{B} \\ & \text { A500 Gr. B } \\ & \text { A53 } \mathrm{Gr} . \text { B } \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 2635 \end{array}$	$\begin{array}{\|l} 58 \\ 58 \\ 58 \\ 68 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l} 50 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = / Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} S_{x_{2}} \\ \left(\text { in }^{3}\right) \end{gathered}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(\mathrm{in}^{4}\right)}{I_{x_{2}}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W14 $\times 730$	215	22.4	3.07	17.9	4.91	1280	1660	14300	4720	4.69
W14 $\times 808$	238	22.8	3.74	18.6	5.12	1390	1830	15900	5550	4.83
W14 $\times 873$	257	23.6	3.94	18.8	5.51	1530	2030	18100	6170	4.90
W16 $\times 26^{3,4}$	7.68	15.7	0.250	5.50	0.345	38.4	44.2	301	9.59	1.12
W16 $\times 31^{4}$	9.13	15.9	0.275	5.53	0.440	47.2	54.0	375	12.4	1.17

LIVE LOAD DEFLECTION...

is the same except with a different load in the equation. The live load, $w=75 \times 8=600 \# / \mathrm{ft}=0.6 \mathrm{k} / \mathrm{ft}$, so...
The live load, $P=0.6 \times 28=16.8 \mathrm{k}$

The actual live load deflection is:
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(22.46)(16.8)(28)^{3} /(29,000 \times 301)=0.95$ in.

The allowable live load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For live loads only, the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/360 (with L expressed in inches), we get an allowable value of $28 \times 12 / 360=0.93 \mathrm{in}$.

Conclusion: Since the actual total-load deflection is greater than the allowable total-load deflection, the W16x26 is not OK for live-load deflection!

To improve the deflection performance of the beam, find a cross section with a larger moment of inertia (and an acceptable plastic section modulus for bending stress).

But we will not redesign this beam: only note that it is not OK for live load deflection (but it's close).

Framing plan

Design typical beam (no live load reduction).

Assume L $=75 \mathrm{psf}$ and $\mathrm{D}=55 \mathrm{psf}$
Use A-992 steel with $F_{y}=50 \mathrm{ksi}$
Just for the record, if we were going to account for live load reduction, we would use a tributary area $=28 \times 8=224 \mathrm{ft}^{2}$ and a live load element factor, $K_{L L}=2$.

The reduced live load would therefore be $75 \times[0.25+15 / \operatorname{sqrt}(2 \times 224)]=75 \times 0.96=71.9 \mathrm{psf}$
But, for this example, we used the unreduced live load, $\mathrm{L}=75 \mathrm{psf} . .$.
Now, on to girder design, also using the unreduced live load.

Design typical girder (no live load reduction).

Assume $\mathrm{L}=75 \mathrm{psf}$ and $\mathrm{D}=55 \mathrm{psf}$
Use A-992 steel with $F_{y}=50 \mathrm{ksi}$

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(k s i)$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

Design typical girder (no live load reduction).

Assume L $=75 \mathrm{psf}$ and $\mathrm{D}=55 \mathrm{psf}$
Use A-992 steel with $F_{y}=50 \mathrm{ksi}$

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathrm{ksi})$	(Ultimate) tensile stress, F_{u} (ksi)	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 Gr. B } \\ & \text { A500 Gr. B } \\ & \text { A53 Gr. B } \end{aligned}$	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

$Z_{\text {req }}=M_{\text {max }} /\left(0.6 F_{y}\right)$
$Z_{\text {req }}=5591 /(0.6 \times 50)=186.4$ in 3

Design typical girder (no live load reduction).

Assume $\mathrm{L}=75 \mathrm{psf}$ and $\mathrm{D}=55 \mathrm{psf}$
Use A-992 steel with $F_{y}=50 \mathrm{ksi}$

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(k s i)$	(Ultimate) tensile stress, $F_{u}(\mathrm{ksi})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & 235 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	A992	50	65	${ }^{3} \mathrm{~W}$
	A572 Gr. 50	50	65	HP

$Z_{\text {req }}=M_{\text {max }} /\left(0.6 F_{y}\right)$
$Z_{\text {req }}=5591 /(0.6 \times 50)=186.4$ in 3

Select provisional section from Table A-4.15

Table A-4.15: Plastic section modulus $\left(Z_{x}\right)$ values: lightest laterally braced steel compact shapes for bending,
$F_{y}=50 \mathrm{ksi}$

Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(f t)$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$
W6 $\times 8.5{ }^{1}$	5.59	3.14	W21 $\times 55$	126	6.11	W40 $\times 211$	906	8.87
W6 $\times 9^{1}$	6.23	3.20	W24 $\times 55$	434	4.73	W40 $\times 215$	964	12.5
$\mathrm{W} 8 \times 10^{1}$	8.77	3.14	W21 $\times 62$	144	6.25	W44 $\times 230$	1100	12.1
$\mathrm{W} 10 \times 12^{1}$	12.5	2.87	W24 $\times 62$	153	4.87	W40 $\times 249$	1120	12.5
W12 $\times 14$	17.4	2.66	W21 $\times 68$	160	6.36	W44 $\times 262$	1270	12.3
W12 $\times 16$	20.1	2.73	W24 $\times 68$	177	6.61	W44 $\times 290$	1410	12.3
W10 $\times 19$	21.6	3.09	W24 $\times 76$	200	6.78	W40 $\times 324$	1460	12.6
W12 $\times 19$	24.7	2.90	W24 $\times 84$	224	6.89	W44 $\times 335$	1620	12.3
W10 $\times 22$	26.0	4.70	W27 $\times 84$	244	7.31	W40 $\times 362$	1640	12.7
W12 $\times 22$	29.3	3.00	W30 $\times 90$	283	7.38	W40 $\times 372$	1680	12.7
W14 $\times 22$	33.2	3.67	W30 $\times 99$	312	7.42	W40 $\times 392$	1710	9.33
W12 $\times 26$	37.2	5.33	W30 $\times 108$	346	7.59	W40 $\times 397$	1800	12.9
W14 $\times 26$	40.2	3.81	W30 $\times 116$	378	7.74	W40 $\times 431$	1960	12.9
W16 $\times 26$	44.2	3.96	W33 $\times 118$	415	8.19	W36 $\times 487$	2130	14.0
W14 $\times 30$	47.3	5.26	W33 $\times 130$	467	8.44	W40 $\times 503$	2320	13.1
W16 $\times 31$	54.0	4.13	W36 $\times 135$	509	8.41	W36 $\times 529$	2330	14.1
W14 $\times 34$	54.6	5.40	W33 $\times 141$	514	8.58	W40 $\times 593$	2760	13.4
W18 $\times 35$	66.5	4.31	$\mathrm{W} 40 \times 149$	598	8.09	W36 $\times 652$	2910	14.5
W16 $\times 40$	73.0	5.55	W36 $\times 160$	624	8.83	W36 $\times 655$	3080	13.6
W18 $\times 40$	78.4	4.49	$\mathrm{W} 40 \times 167$	693	8.48	W36 $\times 723$	3270	14.7
W21 $\times 44$	95.4	4.45	W36 $\times 182$	718	9.01	W36 $\times 802$	3660	14.9
$\mathrm{W} 21 \times 48$	107	6.09	$\mathrm{W} 40 \times 183$	774	8.80	W36 $\times 853$	3920	15.1
$\mathrm{W} 21 \times 50$	110	4.59	W40 $\times 199$	869	12.2	W36 $\times 925$	4130	15.0
$W 18 \times 55$	112	5.90						

Table A-4.15: Plastic section modulus $\left(Z_{x}\right)$ values: lightest laterally braced steel compact shapes for bending,
$F_{y}=50 \mathrm{ksi}$

Shape	$Z_{x}\left(i n^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$	Shape	$Z_{x}\left(\mathrm{in}^{3}\right)$	${ }^{2} L_{p}(\mathrm{ft})$
W6 $\times 8.5{ }^{1}$	5.59	3.14	W21 $\times 55$	126	6.11	W40 $\times 211$	906	8.87
W6 $\times 9^{1}$	6.23	3.20	W24 $\times 55$	434	4.73	W40 $\times 215$	964	12.5
$\mathrm{W} 8 \times 10^{1}$	8.77	3.14	W21 $\times 62$	144	6.25	W44 $\times 230$	1100	12.1
$\mathrm{W} 10 \times 12^{1}$	12.5	2.87	W24 $\times 62$	153	4.87	W40 $\times 249$	1120	12.5
W12 $\times 14$	17.4	2.66	W21 $\times 68$	160	6.36	W44 $\times 262$	1270	12.3
$\mathrm{W} 12 \times 16$	20.1	2.73	W24 $\times 68$	177	6.61	W44 $\times 290$	1410	12.3
W10 $\times 19$	21.6	3.09	W24 $\times 76$	200	6.78	W40 $\times 324$	1460	12.6
W12 $\times 19$	24.7	2.90	W24 $\times 84$	224	6.89	W44 $\times 335$	1620	12.3
W10 $\times 22$	26.0	4.70	W27 $\times 84$	244	7.31	W40 $\times 362$	1640	12.7
W12 $\times 22$	29.3	3.00	W30 $\times 90$	283	7.38	W40 $\times 372$	1680	12.7
W14 $\times 22$	33.2	3.67	W30 $\times 99$	312	7.42	W40 $\times 392$	1710	9.33
W12 $\times 26$	37.2	5.33	W30 $\times 108$	346	7.59	W40 $\times 397$	1800	12.9
W14 $\times 26$	40.2	3.81	W30 $\times 116$	378	7.74	W40 $\times 431$	1960	12.9
W16 $\times 26$	44.2	3.96	W33 $\times 118$	415	8.19	W36 $\times 487$	2130	14.0
W14 $\times 30$	47.3	5.26	W33 $\times 130$	467	8.44	W40 $\times 503$	2320	13.1
W16 $\times 31$	54.0	4.13	W36 $\times 135$	509	8.41	W36 $\times 529$	2330	14.1
W14 $\times 34$	54.6	5.40	W33 $\times 141$	514	8.58	W40 $\times 593$	2760	13.4
W18 $\times 35$	66.5	4.31	W40 $\times 149$	598	8.09	W36 $\times 652$	2910	14.5
W16 $\times 40$	73.0	5.55	W36 $\times 160$	624	8.83	W36 $\times 655$	3080	13.6
W18 $\times 40$	78.4	4.49	$\mathrm{W} 40 \times 167$	693	8.48	W36 $\times 723$	3270	14.7
W21 $\times 44$	95.4	4.45	W36 $\times 182$	718	9.01	W36 $\times 802$	3660	14.9
W21 $\times 48$	107	6.09	$\mathrm{W} 40 \times 183$	774	8.80	W36 $\times 853$	3920	15.1
W21 $\times 50$	110	4.59	W40 $\times 199$	869	12.2	W36 $\times 925$	4130	15.0
$W 18 \times 55$	112	5.90						

We find section properties for the

 W24x76 beam in Table A-4.3.Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=$ I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} \boldsymbol{t}_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{x}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the W24x76 beam in Table A-4.3.

This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

Without footnote 3 marked next to the section, we use a safety factor of 4.0.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=$ / Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{l_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} \boldsymbol{t}_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the

 W24x76 beam in Table A-4.3.This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

Without footnote 3 marked next to the section, we use a safety factor of 4.0.

Since $V=43.68 \mathrm{k}$ and $F_{y}=50 \mathrm{ksi}$, the required web area, $A_{w}=43.68 /(0.40 \times 50)=$ 2.184 in 2

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=$ I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(i n^{3}\right)}{Z_{x}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W 24×76^{4}	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94{ }^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the W24x76 beam in Table A-4.3.

This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

Without footnote 3 marked next to the section, we use a safety factor of 4.0.

Since $V=43.68 \mathrm{k}$ and $F_{y}=50 \mathrm{ksi}$, the required web area, $A_{w}=43.68 /(0.40 \times 50)=$ 2.184 in 2

We compare this required web area to the actual web area by finding d and t_{w} in Table A-4.3.
$d=23.9 \mathrm{in}$. and $t_{w}=0.44 \mathrm{in}$. Therefore, the actual web area $=23.9 \times 0.44=\mathbf{1 0 . 5 2} \mathbf{~ i n}^{2}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=$ I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(i n^{3}\right)}{Z_{x}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W 24×76^{4}	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94{ }^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

We find section properties for the W24x76 beam in Table A-4.3.

This is also where we find out whether to use a safety factor of 0.4 or 0.36 .

Without footnote 3 marked next to the section, we use a safety factor of 4.0.

Since $V=43.68 \mathrm{k}$ and $F_{y}=50 \mathrm{ksi}$, the required web area, $A_{w}=43.68 /(0.40 \times 50)=$ 2.184 in 2

We compare this required web area to the actual web area by finding d and t_{w} in Table A-4.3.
$d=23.9 \mathrm{in}$. and $t_{w}=0.44 \mathrm{in}$. Therefore, the actual web area $=23.9 \times 0.44=10.52 \mathbf{~ i n}^{2}$.

Since the actual web area is greater or equal to the required web area, the section is OK for shear.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=$ I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(i n^{3}\right)}{Z_{x}}$	$\underset{\left(i^{4}\right)}{I_{1}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W 24×76^{4}	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94{ }^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Notes:

1. Section not compact for steel with $F_{y}=36 \mathrm{ksi}$ or $F_{y}=50 \mathrm{ksi}$.
2. Section compact for steel with $F_{y}=36 \mathrm{ksi}$, but not compact for steel with $F_{y}=50 \mathrm{ksi}$.
3. Section webs do not meet slenderness criteria for shear for which the allowable stress can be taken as $F_{v}=0.4 F_{y}$; instead, use a reduced allowable shear stress, $F_{v}=0.36 \mathrm{Fy}$.
4. Section is slender for compression with $F_{y}=50 \mathrm{ksi}$.
5. W-shapes are grouped together with common inner roller dimensions (i.e., web "lengths" excluding fillets)

The last step in the beam design process is to check the $\mathbf{W} \mathbf{2 4 x} 76$ for deflection.

Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

The last step in the beam design process is to check the $\mathbf{W} \mathbf{2 4 x} \mathbf{7 6}$ for deflection.
Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformly loaded simply-supported beams, which is:
$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

The last step in the beam design process is to check the $\mathbf{W} \mathbf{2 4 x} \mathbf{7 6}$ for deflection.
Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):

$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{8 5 . 5 4}$ in this case.

Table A-4.17: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

Deflection coefficient, C, for maximum (actual) deflection, Δ (in.), where $\Delta=\frac{C P(L / 12)^{3}}{E I_{x}}$					
	\triangle	y			V
$\begin{gathered} P=w(L / 12) \\ \vdots \\ \downarrow \downarrow \downarrow \downarrow \downarrow \end{gathered}$	22.46	9.33	4.49	216	
${ }^{P}$	35.94	16.07	8.99	n/a	
$\downarrow P \quad{ }+P$	61.34	26.27	13.31	n/a	
${ }^{P} \downarrow^{P} \downarrow$ P	85.5	36.12	17.97	n/a	
\downarrow^{P}	n/a	n/a	n/a	576	

The last step in the beam design process is to check the $\mathbf{W} \mathbf{2 4 x} \mathbf{7 6}$ for deflection. Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{8 5 . 5 4}$ in this case.

Table A-4.17: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

Deflection coefficient, C, for maximum (actual) deflection, Δ (in.), where $\Delta=\frac{C P(L / 12)^{3}}{E I_{x}}$					
	\triangle	\star	§		E
	22.46	9.33	4.49	216	
P	35.94	16.07	8.99	n/a	
P	61.34	26.27	13.31	n/a	
$\downarrow P \downarrow P \downarrow$	85.5	36.12	17.97	n/a	
\downarrow^{P}	n/a	n/a	n/a	576	

The other parameters are easily determined:
$P=\mathbf{2 9 . 1 2} \mathbf{k}$ for total load deflection (from diagram); and $P=(75)(28 \times 8)=16,800 \#=\mathbf{1 6 . 8} \mathbf{k}$ for live load deflection

The last step in the beam design process is to check the $\mathbf{W} \mathbf{2 4 x} \mathbf{7 6}$ for deflection. Here, the relevant parameters are material properties (modulus of elasticity, E), sectional properties (moment of inertia, I_{x}), span (L), and load (w).

Rather than using the specialized equation for maximum mid-span deflection of a uniformlyloaded simply-supported beams, which is:

$\Delta=5 w L^{4} /\left(384 E I_{x}\right)$

We'll use the equation from the more flexible Appendix Table A-4.17 (same as A-3.15):
$\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$ where the coefficient, C is found from the table: $\boldsymbol{C}=\mathbf{8 5 . 5 4}$ in this case.

Table A-4.17: Maximum (actual) deflection in a beam ${ }^{1,2,3}$

Deflection coefficient, C, for maximum (actual) deflection, Δ (in.), where $\Delta=\frac{C P(L / 12)^{3}}{E I_{x}}$					
	\triangle	\star	§		E
	22.46	9.33	4.49	216	
P	35.94	16.07	8.99	n/a	
P	61.34	26.27	13.31	n/a	
$\downarrow P \downarrow P \downarrow$	85.5	36.12	17.97	n/a	
\downarrow^{P}	n/a	n/a	n/a	576	

The other parameters are easily determined:
$P=\mathbf{2 9 . 1 2} \mathbf{k}$ for total load deflection (from diagram); and $P=(75)(28 \times 8)=16,800 \#=\mathbf{1 6 . 8} \mathbf{k}$ for live load deflection

Start with total load deflection.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(k s i)$	(Ultimate) tensile stress, F_{u} (ksi)	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l\|} 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l} 50 \\ 50 \end{array}$	$\begin{array}{\|l} 65 \\ 65 \end{array}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i n^{3}\right)}{S_{x}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(i n^{4}\right)}{I_{x_{2}}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l\|} 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{array}{\|l} 65 \\ 65 \end{array}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = 1 Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\begin{gathered} A \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$W 24 \times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(29.12)(32)^{3} /(29,000 \times 2100)=1.34 \mathrm{in}$.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, F_{y} (ksi)	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{array}{\|l} 50 \\ 50 \end{array}$	$\begin{array}{\|l} 65 \\ 65 \end{array}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=$ / Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} \boldsymbol{t}_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i n^{3}\right)}{S_{i}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W24 $\times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(85.54)(29.12)(32)^{3} /(29,000 \times 2100)=1.34 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(85.54)(29.12)(32)^{3} /(29,000 \times 2100)=1.34 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / \mathbf{2 4 0}$ while typical roof beam limits are $L / 120, L / 180$, or $L / 240$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathbf{i n}^{3}\right)}{S_{1}}$	$\underset{\left(\mathbf{i n}^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{r}_{y} \\ \text { (in.) } \end{gathered}$
W $24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = $/$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(i n^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{1}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ (\text { in. } \end{gathered}$
W24 $\times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94{ }^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(29.12)(32)^{3} /(29,000 \times 2100)=1.34 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / \mathbf{2 4 0}$ while typical roof beam limits are $L / 120, L / 180$, or $L / 240$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/240 (with L expressed in inches), we get an allowable value of $32 \times 12 / 240=1.6 \mathrm{in}$.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 60 \end{aligned}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=$ I Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / \mathrm{A}}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} \boldsymbol{t}_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { in. } \end{gathered}$	$\begin{gathered} S_{x_{2}} \\ \left(\text { in }^{3}\right) \end{gathered}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

TOTAL LOAD DEFLECTION:

So, we can now compute the actual total load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(29.12)(32)^{3} /(29,000 \times 2100)=1.34 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / \mathbf{2 4 0}$ while typical roof beam limits are $L / 120, L / 180$, or $L / 240$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/240 (with L expressed in inches), we get an allowable value of $32 \times 12 / 240=1.6 \mathrm{in}$.

Conclusion: Since the actual total-load deflection is less than or equal to the allowable total-load deflection, the W24x76 is OK for total-load deflection!

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, F_{y} (ksi)	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{array}{\|l} 50 \\ 50 \end{array}$	$\begin{array}{\|l} 65 \\ 65 \end{array}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = / Section modulus, $S_{x}=21_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} S_{x_{1}} \\ \left(i^{3}\right) \end{gathered}$	$\underset{\left(i^{3}\right)}{z_{1}}$	$\begin{gathered} I_{x_{1}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{n}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W $24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76{ }^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94{ }^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

LIVE LOAD DEFLECTION:

So, we can now compute the actual live load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(16.8)(32)^{3} /(29,000 \times 2100)=0.77 \mathrm{in}$.

To find the concentrated load, P, for live load only:

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	A36 A500 Gr. B A500 Gr. B A53 Gr. B	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & { }^{2} 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{array}{\|l\|l} \text { A992 } \\ \text { A572 Gr. } 50 \end{array}$	$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = / Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} S_{x_{1}} \\ \left(\mathrm{in}^{3}\right) \end{gathered}$	$\underset{\left(i^{3}\right)}{z_{1}}$	$I_{x_{4}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W $24 \times 68{ }^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94{ }^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

LIVE LOAD DEFLECTION:

So, we can now compute the actual live load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or
$\Delta=(85.54)(16.8)(32)^{3} /(29,000 \times 2100)=0.77 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathrm{ksi})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 Gr. B } \\ & \text { A500 Gr. B } \\ & \text { A53 Gr. B } \end{aligned}$	$\begin{aligned} & 36 \\ & 42 \\ & 46 \\ & 26 \\ & { }_{3} 35 \end{aligned}$	$\begin{array}{\|l\|} 58 \\ 58 \\ 58 \\ 60 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

LIVE LOAD DEFLECTION:

So, we can now compute the actual live load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(16.8)(32)^{3} /(29,000 \times 2100)=0.77 \mathrm{in}$.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = $/$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\begin{gathered} A \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i^{3}\right)}{S_{1}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x_{2}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$W 24 \times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathbf{k s i})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 Gr. B } \\ & \text { A500 Gr. B } \\ & \text { A53 Gr. B } \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 235 \end{array}$	$\begin{array}{\|l\|} \hline 58 \\ 58 \\ 58 \\ 68 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l} 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{array}{\|l} \hline{ }^{3} \mathrm{~W} \\ \mathrm{HP} \end{array}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia = 1 Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\begin{gathered} A \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(\mathrm{in}^{3}\right)}{S_{1}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$W 24 \times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

LIVE LOAD DEFLECTION:

So, we can now compute the actual live load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(16.8)(32)^{3} /(29,000 \times 2100)=0.77$ in.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/360 (with L expressed in inches), we get an allowable value of $32 \times 12 / 360=1.07 \mathrm{in}$.

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathrm{ksi})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 } \mathrm{Gr} . \mathrm{B} \\ & \text { A500 Gr. B } \\ & \text { A53 } \mathrm{Gr} . \text { B } \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 2635 \end{array}$	$\begin{array}{\|l} 58 \\ 58 \\ 58 \\ 68 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l} 50 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 I_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{f} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i n^{3}\right)}{S_{x}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\underset{\left(i n^{4}\right)}{I_{x_{2}}}$	$\begin{gathered} I_{y_{4}} \\ \left(\mathrm{in}^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
$\mathrm{W} 24 \times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

LIVE LOAD DEFLECTION:

So, we can now compute the actual live load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(16.8)(32)^{3} /(29,000 \times 2100)=0.77$ in.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/360 (with L expressed in inches), we get an allowable value of $32 \times 12 / 360=1.07 \mathrm{in}$.

Conclusion: Since the actual live-load deflection is less than or equal to the allowable live-load deflection, the W24x76 is OK for live-load deflection!

Chapter 4 - Steel: Appendix

Table A-4.1: Steel properties ${ }^{1}$

Category	ASTM designation	Yield stress, $F_{y}(\mathrm{ksi})$	(Ultimate) tensile stress, $F_{u}(\mathbf{k s i})$	Preferred for these shapes
Carbon	$\begin{aligned} & \text { A36 } \\ & \text { A500 } \mathrm{Gr} . \mathrm{B} \\ & \text { A500 Gr. B } \\ & \text { A53 } \mathrm{Gr} . \text { B } \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ 42 \\ 46 \\ 2635 \end{array}$	$\begin{array}{\|l} 58 \\ 58 \\ 58 \\ 68 \end{array}$	M, S, C, MC, L, plates ${ }^{4}$ and bars HSS round ${ }^{5}$ HSS rectangular ${ }^{5}$ Pipe
High-strength, lowalloy	$\begin{aligned} & \text { A992 } \\ & \text { A572 Gr. } 50 \end{aligned}$	$\begin{array}{\|l} 50 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline{ }^{3} \mathrm{~W} \\ & \mathrm{HP} \end{aligned}$

Notes:

1. The modulus of elasticity, E, for these steels can be taken as $\mathbf{2 9 , 0 0 0} \mathbf{k s i}$.

Table A-4.3: Dimensions and properties of steel W sections ${ }^{5}$

Flange thickness, t_{f} Web thickness, t_{w}				Cross-sectional area $=A$ Moment of inertia $=1$ Section modulus, $S_{x}=2 I_{x} / d$ Sectional modulus, $S_{y}=2 l_{x} / b_{f}$ Radius of gyration, $r_{x}=\sqrt{I_{x} / A}$ Radius of gyration, $r_{y}=\sqrt{I_{y} / A}$						
Designation	$\underset{\left(\mathrm{in}^{2}\right)}{A}$	$\underset{\text { (in.) }}{d}$	$\begin{gathered} t_{w} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{b}_{f} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \boldsymbol{t}_{\boldsymbol{f}} \\ \text { (in.) } \end{gathered}$	$\underset{\left(i n^{3}\right)}{S_{i}}$	$\underset{\left(i^{3}\right)}{Z_{1}}$	$\begin{gathered} I_{x_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} I_{y_{4}} \\ \left(\text { in }^{4}\right) \end{gathered}$	$\begin{gathered} r_{y} \\ \text { (in.) } \end{gathered}$
W24 $\times 68^{4}$	20.1	23.7	0.415	8.97	0.585	154	177	1830	70.4	1.87
W24 $\times 76^{4}$	22.4	23.9	0.440	8.99	0.680	176	200	2100	82.5	1.92
W24 $\times 84^{4}$	24.7	24.1	0.470	9.02	0.770	196	224	2370	94.4	1.95
W24 $\times 94^{4}$	27.7	24.3	0.515	9.07	0.875	222	254	2700	109	1.98
W24 $\times 103^{4}$	30.3	24.5	0.550	9.00	0.980	245	280	3000	119	1.99

LIVE LOAD DEFLECTION:

So, we can now compute the actual live load deflection: $\Delta=C P(L / 12)^{3} /\left(E I_{x}\right)$, or $\Delta=(85.54)(16.8)(32)^{3} /(29,000 \times 2100)=0.77$ in.

The allowable total load deflection can be found in the footnotes to Table A-4.17 (or A-3.15):

For total loads (combined live and dead), the typical basic floor beam limit is $L / 360$ while typical roof beam limits are $L / 180, L / 240$, or $L / 360$ (for no ceiling, nonplaster ceiling, or plaster ceiling respectively).

Using the typical limit of L/360 (with L expressed in inches), we get an allowable value of $32 \times 12 / 360=1.07 \mathrm{in}$.

Conclusion: Since the actual live-load deflection is less than or equal to the allowable live-load deflection, the W24x76 is OK for live-load deflection!

Conclusion: The W24x76 is good for bending, shear, and deflection, so it works!

